Measuring and Reporting on TTC Operations: Part I

The TTC reports on its overall performance through the monthly CEO’s Report. This document is rarely discussed in detail at Board meetings, and often is the underpinning for “good news” about how well the TTC is doing, not about how it could be even better.

Regular readers here know that I often despair over the quality of the metrics used in this report. A few months ago, during a Board meeting, CEO Rick Leary mentioned that the metrics in his report were to be updated. This article is the first in a series discussing of what might be done to improve things. Future articles will review practices in other major North American transit systems, as well as the state of TTC service seen through a more rigourous reporting standard.

The pandemic era fundamentally changed the environment where the TTC operates. Ridership is down, but demand for reliable service is as strong as ever because social distancing is a new requirement. In past years, riders might complain about crowding, but this could be fobbed of with the usual excuses that things were not too bad on average – in any event, we could not improve service because either we had too few vehicles or too little budget room to operate more.

Plans were always tailored to available subsidy funding and the on-and-off-again political desire to “improve” transit by freezing fares. In spite of repeated requests from some TTC Board members, staff would never produce an aspirtional budget showing how much it would cost to plan for overall service improvement beyond a minimal level. That was the approach in the Ridership Growth Strategy, now almost two decades old, and hard fought-for in its time.

Today, a crowded bus represents more than an inconvenience – riders see crowding as a safety issue in this pandemic era.

Looking ahead in 2021 and beyond, there is a potential for resurging transit demand at a time when government support for emergency funding could wane. This could force cutbacks just at a time when transit needs to at least hold its own, if not improve.

The TTC reports superficial measures of its service that do not tell us much about rider experiences even though that is the “shop window” of the transit business. Far too few data are reported at a granular level where the variation in experiences is evident. Little data is available online for review, and much of that is not up to date.

The Tyranny of Averages

Riders do not consume “average” service. Getting to work on time, on average, is not an option. Riders have to assume that the service will be bad and build padding to compensate into their plans.

Riders usually board the first vehicle that shows up after an indeterminate wait compounded by potential crowding. Even if they allow for irregular service, they have no control over whatever shows up day-by-day. Both the physical environment and the need to be somewhere on time can add anxiety to their journey.

Many routes and trips are not crowded, considered on an all route, all day basis, but some are. A major problem here is how we count things.

If we count crowded buses, we might find that, over the day, ten percent of vehicles are crowded. However, there are more passengers on those buses and so the experience of crowding affects proportionately more riders. The same applies to long waits before a trio of buses appears at a stop. The “average” service might match the scheduled buses/hour, but the true experience is of a long wait followed by a crowded journey.

This is the basic reason why management can claim that “on average” service is pretty good, even in these difficult times, while riders complain bitterly that it is not. Service metrics are needed to reveal the variations, how often and how badly the TTC misses its targets, as well as the number of affected riders.

Big Data vs Big Reports

Over the decades, the CEO’s Report (formerly the Chief General Manager’s Report reflecting the position’s earlier title) varied in volume and complexity. This depended on the interests of the then-sitting Board and the style of the then-current management. For a time, it included detailed project status reports on everything from major subway construction all the way down to routine system repairs, but with no interpretive summary to flag problem areas.

Only the most dedicated would read every page, and the report accomplished its objective of appearing to inform while overwhelming with raw detail. Much more information was available about capital project status than day-to-day operations.

At the other extreme, performance data are consolidated to a level where Board members can digest them, but with a loss of detail.

In our time of Big Data, there is a danger of information overload. Readers who follow my route performance analyses know of the volume of charts and data published here, and those are only the tip of a very large iceberg. Nobody would read a monthly description of every route.

The point should not be to read all of the detail, but to have a summary that flags problem areas with the detailed information as a backup. If the same problems show up every day, they are systemic issues, not ones caused by occasional disruptions. The Board should know about them and about what management is doing to correct and improve affected areas. This is Management 101.

From an accountability viewpoint, riders and politicians are interested in their route, in their wards, but those responsibile for the entire system should be able to verify that overall behaviour is not consolidated beyond recognition into a meaningless average. This requires two important changes in how performance data are presented:

  • The granularity of analyses in time and space (e.g. by route and location) must be sufficient that it can be related to the experience of a rider making a specific trip at a specific time.
  • Exception reporting of problem areas should flag these for action and be tracked in overviews like the CEO Report, but the detail should be available online on a timely basis.

Those points as written are aimed at service reliability, but can easily apply with modifications to areas such as equipment and infrastructure.

Why Do We Measure?

The reasons for measuring things are summed up in this quotation from an extensve report on the subject that is now close to two decades old:

Agencies collect … measures to help identify how well service is being provided to their customers, the areas where improvement may be needed, and the effects of actions previously taken to improve performance. In these cases, agencies use performance measures to help provide service as efficiently as possible, monitor whether agency and community goals are being met, and—over time—improve service so that it attracts new riders. Changes in policy, procedures, and planning can result from an understanding and appraisal of certain measures.

… [D]ecision-making bodies, such as transit boards and funding bodies, need to have access to accurate information to help them make decisions on where and when service should be provided and to support actions designed to improve performance. The public is also interested in knowing how well service is being provided and may need convincing that transit provides a valuable service, for them, for someone they know, or for the community as a whole.

Performance measurement data provide transit agency management with objective assessments of current circumstances, past trends, existing concerns, and unmet needs.

A Guidebook for Developing a Transit Performance-Measurement System, Transportation Research Board, 2003, p. 4

Eagle-eyed readers will notice that I have not mentioned financial issues like fares, subsidies, cost control and “efficiency”. Too many transit discussions start with the question “how can we reduce costs” before asking “what quality do we want and are we providing it”. However, if the publicly reported data are spotty and do not address specifics rather than general averages, any political discussion of funding will be hobbled.

What might be “efficient” transit service depends on our goals, and use of that term typically implies that there is some way to do more with less, and that we should aim lower. “Good service” may not be viewed as a public good in some political circles except when the time comes to woo voters.

Finally, we must beware of metrics that allow management to “game the system” by hitting easy targets, or by measuring and reporting in a way that puts them in the best possible light.

Objectivity is another aspect of reliability. Those involved in developing measures, obtaining data, and analyzing performance should not permit their self-interests to affect the accuracy of the results. Performance measures should not be selected on the basis of which measures will make the agency look good and avoided where those performance measures make an agency look bad. Rather, selection of performance measures should be based on how accurately and fairly those measures assess agency performance and whether they can be used as a tool to measure goal achievement.

TRB, op. cit., p. 13
Continue reading